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Introduction 
Molecular imaging (MI) encompasses a wide array of biological applications that can be 
evaluated non-invasively in vivo. To date, much of that evaluation has been in pre-clinical 
models, mostly mice, with increasing clinical translation expected. Many of the technologies 
including MRI, PET, SPECT, optical fluorescence (injected probes), CT, and ultrasound are 
translatable between both realms. Others, such as bioluminescence imaging and fluorescence 
protein imaging are primarily preclinical tools. The most important point of this lecture is that 
each biological question one wishes to evaluate non-invasively can be approached using more 
than one imaging modality. Molecular imaging is multimodal, and each technique has its 
strengths and weaknesses. The biological question determines the optimal imaging strategy, and 
often times diverse imaging technologies complement each other to produce information that is 
greater than the sum of the parts. 
 
MRI 
MRI has very high spatial resolution compared to many of the other modalities; mouse imaging 
easily achieves 0.1 x 0.1 x 0.5 mm voxels with reasonable SNR in a matter of minutes and MR 
microscopy is possible with longer times. Additionally, there is no significant attenuation of 
signal with depth over the scale of rodents or people at commonly used field strengths. The 
major weakness of MRI is insensitivity, both with intrinsic contrast imaging, and using 
administered molecularly-targeted or sensing agents. Several strategies have been employed to 
increase the sensitivity of detection compared to gadolinium small molecules which are typically 
detectable in the 10-4 M range, including the use of iron oxide nanoparticles (1-3), which have 
detection thresholds in the 10-8 M range, or the use of gadolinium-encapsulated liposomes (4) or 
gadolinium-conjugated dendrimers (5).  
 
MRI has been used quite extensively for receptor imaging, including receptors on normal tissue 
(such as asialoglycoprotein receptors present on normal hepatocytes), tumors (e-selectin, folate, 
her2), abnormal vasculature (alphaVbeta3-integrin), and for “receptors” expressed on cell 
surfaces when the cells are dying (apoptosis imaging via annexin binding). Given the 
insensitivity of MRI, these receptors often have to be expressed at moderate to high levels to be 
visualzied, and conjugation to moieties that are detectable in lower concentrations (such as iron 
oxide nanoparticles) is often required. MRI is a useful modality for cell tracking. The extremely 
high spatial resolution that can be achieved deep inside tissue compared to other modalities and 
the associated anatomic information regarding adjacent structures is a benefit; in some cases 
single cells can be imaged (6, 7). Additionally, the labeling methods for MRI in general do not 
change viability, function, or differentiation of cells at the labeling levels typically reported (8). 
However, cell loading of imagable agents (often iron oxide nanoparticles), decreases with cell 
division so that typically it is an approach best used for short term cell tracking (on the order of 
one week or less). Additionally, cell viability cannot be determined without the use of a second 
modality, since the MR reporter in this case is the nanoparticle, which is present in both live and 
dead cells and moreover can be locally phagocytosed by macrophages clearing dead cells, 



occasionally leading to the false impression of persistence of labeled cells. MRI can also be used 
for reporting of marker genes (9). The advantage of high spatial resolution may be partially 
offset by the trade off in sensitivity compared to other marker gene approaches. Another 
important area where MRI has been extensively used is in the evaluation of angiogenesis and 
vascular imaging in general. Advantages such as high spatial resolution play into MRI’s strength, 
especially for evaluation of vascular volume fraction using blood pool agents or imaging changes 
in capillary leak using dynamic GdDTPA imaging. Imaging of specific vascular targets has been 
performed by MRI, but can also be approached by a number of other modalities, especially 
isotope imaging methods. Finally, imaging enzyme function, such as myeloperoxidase activity 
has been performed in vivo using probes that change their relaxation properties (10). These smart 
probes complement optical smart probes which have been optimized for imaging protease 
activity. 
 
PET 
PET imaging has grown exponentially over the last few years, both clinically (the vast majority 
of which has been FDG functional glucose imaging), and pre-clinically. PET has relatively low 
spatial resolution and poor anatomic delineation but extremely high sensitivity. To partially 
overcome the spatial issues and to improve anatomic correlation of signal, PET-CT combination 
systems have replaced stand alone PET cameras in many institutions. Given the very high 
sensitivity, which is among the highest for any molecular imaging modality, especially for 
deeper tissue, PET imaging is ideally suited for receptor imaging. Additionally, it is well suited 
for quantitatively evaluating the biodistribution of pharmacological agents, especially in cases 
where the radiolabeled drug can be synthesized without significantly changing the steric 
properties of the compound. PET has also been used both preclinically and clinically quite 
effectively for imaging gene expression using a marker gene paradigm. In this case, the PET 
imaging agent is trapped inside cells expressing the marker gene. This can be used to track 
exogenously administered genes for therapy, or can be used to ex vivo label cell populations 
which can subsequently be imaged in vivo (11). Advantages include the ability to follow cells 
longer than is typically possible with MRI and iron oxide based approaches. Since the imaging 
agent is not given until just before imaging, radiotoxicity tends to be less of an issue. Downsides 
to PET imaging include the increased complexity of synthesis of agents to new targets, and the 
requirement for agents to reach their molecular target in relatively short time periods (because of 
radioactive decay). 
 
SPECT 
As a broad generalization, SPECT molecular imaging in many ways is similar to PET imaging. 
Overall, SPECT devices tend to be less sensitive than PET devices but the synthesis of imaging 
probes may be easier. SPECT has been used extensively clinically for receptor imaging, as well 
as imaging processes in which the target is less well defined or depends upon physiologic 
factors. With respect to ex vivo cell labeling, for example with indium oxine, advantages over 
MRI include the ability to detect fewer cells. Disadvantages include possible radiotoxicity since 
the radiolabel is present since cell introduction, limited imaging times (typically somewhat 
shorter than is possible with MRI), and the possibility of redistribution of tracer to other cell 
populations with death of labeled cells. 
 
Near infrared (NIR) optical fluorescence 



Fluorescence imaging of exogenously administered fluorochromes has markedly increased over 
the last few years. Fluorescence is extremely sensitive, and because fluorochromes can be 
interrogated multiple times, unlike radioisotopes in which one molecule can report with only one 
decay, in some cases fluorescence imaging may be more sensitive that isotope imaging. Another 
advantage is the lack of radioactivity. Fluorescence has been used extensively in receptor 
imaging and many fluorescent analogues of isotope-labeled receptor targeting compounds exist. 
For cell tracking, a number of commercially available dyes have been used successfully. Like 
other ex vivo labeling techniques (used in MRI and SPECT) the label is typically visible for 
about a week or less, as the dye is split into daughter cells or slowly leaks out of the cells over 
time.   
 
One of the most powerful recent advances in optical imaging has been the introduction of smart 
fluorescent probes (12). In this case, the administered probes are optically silent (quenched) 
when injected, but increase their fluorescence up to several hundred fold after target interaction. 
Proteases are vital to many normal and pathological processes, and the ability to selectively 
image various proteases, such as cathepsin B, cathepsin D (13), and MMP2, has allowed in situ 
molecular characterization at the protein and enzyme function level. Moreover, direct imaging of 
protease inhibition at the protein level (14) opens the possibility for individualized drug dosing 
of these inhibitors. Additionally, proteases are key common downstream players in diseases such 
as rheumatoid arthritis, so that their indirect modulation by drug therapy likewise allows 
determination of appropriate drug dosing on an individualized level  (15). In vivo work has been 
performed using smart MRI probes, such as in the myeloperoxidase imaging example above or 
in the case of beta-galactosidase MR imaging using an agent which changes its T1 relaxation 
time after beta-galactosidase cleaves a blocking group that shields a central gadolinium (16). 
However, optical imaging has had a larger presence to date in the activatable imaging area, and 
the percentage change in signal intensity after activation is typically far greater by optical than 
by MRI agents. Ultimately, both will have a role, depending upon lesion location and the 
required spatial resolution.  
 
Currently, the diverse imaging modalities used to extract molecular information in vivo typically 
report on one “molecular activity” at a time. For MRI, it is difficult to monitor two agents which 
both change either T1 or T2, as delivery of imaging agents confounds deconvolution of 
relaxation changes. Having one agent report a molecular activity as T1 changes and another 
report a second molecular activity as T2 changes also is difficult, as readout is always somewhat 
T2 weighted, a problem in that T2 relaxation dominates when the second molecular activity is 
present at a high level. For PET imaging, all signal is detected as 511 keV photons, making 
evaluation of even different isotopes difficult. In this case, one depends upon the limited 
differentiation based on different decay rates, superimposed upon the different kinetics of the 
compounds reporting on the different molecular activities. A similar problem exists for standard 
CT scanning in that x-ray attenuation cannot differentiate two different reporters because of the 
superimposed physiological kinetics of agent distribution. A limited evaluation of different 
physiological or molecular parameters may be imaged using single photon techniques, by having 
the two activities report at different energies. However, in cases where two isotopes are present, 
down scatter of the higher energies may interfere in recording of molecular activity reported at 
the lower energy. Optical imaging, in contradistinction, can image multiple targets 
simultaneously (17), opening up the possibility of in vivo mini-arrays which characterize disease 



better than single molecular abnormality imaging. An alternative approach is to combine 
molecular reporting using different imaging modalities, each of which reports a single molecular 
event type.  
 
Techniques for near infrared optical imaging clinically include tomographic approaches (18), 
which are ideally suited for human breast imaging, and endoscopic and catheter based imaging 
(19), which is applicable to imaging human colon, peritoneum, bronchi, lungs, and vessels. 
Moreover, commercial confocal endoscopic systems are available which allow cellular 
resolution in vivo and which can be combined with molecularly sensitive fluorescent probes. 
Thus NIR optical imaging can overcome issues of depth using different approaches, and the 
spatial resolution in some cases is the highest of any molecular imaging modality.  
 
CT 
CT by itself offers little in the way of molecular imaging capabilities. Exogenously administered 
agents (often iodinated compounds), are required in high doses to be seen (much higher than the 
doses of GdDTPA used for nonspecific MRI contrast enhancement). Since many molecular 
events are relatively uncommon (compared to bulk material such as water), there has been 
relatively little in the way of CT based targeted agent development. Some early work has been 
performed using perfusion and leak imaging of small iodinated contrast agents, analogous to the 
double product vascular imaging that has been performed using dynamic Gd-DTPA MRI. The 
major use of CT scanning with respect to molecular imaging is the high resolution anatomic 
detail it provides for multimodality imaging. In particular PET CT has shown its utility in the 
clinical setting where exact anatomic localization of PET signal often changes patient 
management. A second smaller and more limited use of CT for molecular imaging falls into 
preclinical evaluation. In this case, the underlying molecular abnormality is known (e.g. in a 
transgenic mouse) and efficacy of specific molecular therapy is reported as anatomic changes 
recorded by multiple CT’s over time.  
 
Ultrasound 
Ultrasound to date has had a more limited role in molecular imaging compared with many other 
imaging modalities, although it lends itself to focal, directed therapeutic intervention combined 
with imaging. Directed therapy is locally delivered by the use of high powered ultrasound at the 
site of interest resulting in release of the therapeutic agent by the rupture of the encapsulating 
microbubbles. A main imaging role in which ultrasound has been evaluated is to look at changes 
in the number of blood vessels using blood pool agents. This can similarly be performed with 
other modalities, in particular with MRI using long blood half-life agents such as USPIO’s or 
optical imaging of fluorescent blood pool agents. Targeted ultrasound bubbles typically focus on 
pathological vascular targets (because these agents have greater difficulty reaching extravascular 
targets intact). 
 
Bioluminescence imaging 
Bioluminescence imaging is based on the imaging of luciferase, which is either constitutively 
expressed in cells of interest for cell tracking/detection, expressed under the regulation of 
promoters of interest to understand which conditions result in gene expression, or are delivered 
to cells in the setting of gene therapy. Given the expression of a foreign protein (luciferase) in 
cells, this is likely to remain a preclinical modality. Its forte is imaging at the gene expression 



level. A major advantage of the system is very low background. Additionally, it allows very low 
cell numbers to be tracked when the cells are near a surface (e.g. to follow tumor growth or to 
see local superficial metastases). A major disadvantage is the high tissue attenuation of the 
visible wavelength light that is emitted, making the system much less quantitative in deeper 
settings and markedly increasing the detection threshold for deeper imaging. 
 
Fluorescence protein imaging 
This is another preclinical imaging modality. In this case, cell tracking, evaluation of protein-
protein interactions, and gene expression imaging are main areas where fluorescence protein 
imaging has a role. Compared with bioluminescence, there is typically more background due to 
autofluorescence. Like bioluminescence, it suffers from a high degree of attenuation with tissue 
depth, making the detection of deeper cells more difficult and making quantitation problematic. 
Fluorescence protein imaging has the advantage of ease of use, and the ability to image at 
(sub)cellular resolution. 
 
In summary, each molecular imaging modality has strengths and weaknesses. Pick the modality 
or combination of modalities that will best address the specific biological question at hand. 
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